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Abstract

Explicit non-recursive expressions for spin echo amplitudes have been derived for CPMG sequences with arbitrary refocusing flip
angle.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Spin echos are widely used in many areas of magnetic
resonance for more than 50 years. Multiple spin echo
sequence forms the base for one of the most important
method of MR imaging, known as Fast (Turbo) Spin Echo
(FSE, TSE). In most cases, the spin echos are generated by
classic Carr-Purcell-Meiboom-Gill pulse sequence, where
the excitation phase differs from the refocusing phases by
90�, which allows to obtain high signal amplitudes in inho-
mogeneous fields.

p=2y � s=2� px � s� px � s� px . . .

Usage of p refocusing pulses is also a common practice,
because they provide highest possible echo amplitudes.
Nevertheless, it is known that any refocusing flip angle is
able to produce spin echos and in some specific cases it is
preferable to use smaller angles e.g. on high-field imaging
systems which may impose unacceptable RF power load
on a patient by long trains of p radiofrequency pulses.
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Also, selective pulses used in MR imaging usually have
complex spectra and cannot be described by a single value
of refocusing angle. Finally, RF field inhomogeneities
make technically impossible creation of exact p pulses.
Properties of spin echo sequences with arbitrary refocusing
angles were addressed in a number of papers [1–12]. The
general response of a nuclear spin system to CPMG-like
pulse sequence with arbitrary phases and flip angles was
investigated there. The different magnetization pathways
generated by a pulse train have been considered in details.
The most advanced and complete methods of echo ampli-
tudes calculation were elaborated in [10] and [11]. In [10]
it was shown that treatment of the problem in Fourier
space (conjugated to space coordinate) leads to rather sim-
ple recursive procedure of analytical as well as exact
numerical calculation of echo amplitudes. The key point
of the work is that the magnetization vector in Fourier
space is a sum of finite number of delta functions and such
the form keeps on each next step. Isotropic diffusion, trans-
verse and longitudinal relaxation as well as the global
transport were taken into account. The similar approach
has been developed in [11]. There evolution of the magne-
tization has been considered in direct space that required
numerical integration over the space coordinate. Neverthe-
less, even these advanced approaches are recursive in origin
and do not allow to obtain explicit analytical expressions
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for echo amplitudes. Besides, programming of these algo-
rithms are not so straightforward. To our knowledge the
theory still lacks a closed form expression for echo ampli-
tudes. In the present work, we fill partially this gap.
Though we did not succeed to take into account self-diffu-
sion we managed to obtain explicit analytical expression
for the echo amplitudes in neglect of spin relaxation. In
presence of the spin relaxation so-called generating func-
tion for echo amplitudes has been obtained. It makes pos-
sible to calculate analytically as well as numerically any
given number of echo amplitudes all at once using, for
instance, Taylor series expansion procedures in Matlab,
Mathematika, Maple. The amplitudes can be also calculat-
ed numerically employing conventional Fourier transform
algorithm.

2. Expansion of the magnetization into configurations

Our treatment of the spin echo evolution is based on the
theory of configurations, outlined in [4, chapter 8], with
some modifications for the spin echo case.

The formalism is based on the representation of the
magnetization of an isochromate after a number of pulses
and precession periods as a finite Fourier series. The basic
frequency of this series is equal to the phase increment
acquired by the transverse magnetization during the
inter-echo period (or during half of it). Each term of the
Fourier series corresponds to a definite ‘‘configuration’’
that includes all the phase pathways with the same differ-
ence of the net number of dephasing and the net number
of rephasing periods.

Let h represent the phase increment which a spin system
acquires during half of the inter-echo period due to field
inhomogeneities and applied gradients. h is assumed to
be constant for a given voxel position. At the echo time
after nth refocusing pulse, in the middle of inter-pulse inter-
val, the transverse magnetization M+ = Mx + iMy and the
longitudinal magnetization Mz have experienced a whole
number of half-periods of evolution. Both may be
expressed as discrete sums

Mþðn; hÞ ¼
X2n

k¼�2n

F keikh

M�ðn; hÞ ¼
X2n

k¼�2n

F �ke�ikh ¼
X2n

k¼�2n

F ��keikh

Mzðn; hÞ ¼
X2n

k¼�2n

Zkeikh

ð1Þ

where k is the difference between the number of dephasing
and rephasing half-periods.

Consider now how the magnetization and configuration
amplitudes Fk,F�k,Zk evolve from one middle of an inter-
pulse interval to the middle of the next one. To this end the
rotation of the magnetization vector ~M ¼ ðMþ;M�;MzÞ
due to refocusing pulse with angle a has to be taken into
account. It is given by the following expression:
~M ð0þÞ ¼
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~M ð0�Þ ¼ P~M ð0�Þ

ð2Þ

where the superscripts ‘‘(0�)’’ and ‘‘(0+)’’ stand for the
states before and after the pulse, respectively.

Now, combining (1) and (2) we see thatP
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which reduces to
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Therefore, we observe the following behavior of the spin
system in a multi-echo experiment: after the excitation 90o

y

pulse the transverse magnetization is aligned to x 0 axis, so
that M+ = F0 = M0, all other configurations are void.
Then the magnetization evolves during s/2 period, all indi-
ces of the transverse components are incremented by one.
Z states do not change. Next, the refocusing pulse ax mixes
F,F*,Z configurations of the same order according to Eq.
(4). Another half-period of evolution increments all trans-
verse configuration indices, F ��1 becomes F �0 ¼ F 0 and
forms the echo. Its amplitude is what we seek. The cycle
continues.

3. Derivation of nth echo amplitude

Let us denote the values Fk,F ��k,Zk at the instant of nth
echo detection as Fk(n), F ��kðnÞ, Zk(n), respectively. Assume
that F 0ð0Þ ¼ F �0ð0Þ ¼ M0 and F kð0Þ ¼ F ��kð0Þ ¼ 0 for k > 0
where M0 is the value of transverse magnetization just after
the initial excitation pulse, Zk(0) = 0 for all k. Now we
define functions of complex variable u: Sn(u), ~SnðuÞ, Xn(u)
in the following way:

SnðuÞ ¼
Xk¼1

k¼�1
F kðnÞuk

~SnðuÞ ¼
Xk¼1

k¼�1
F ��kðnÞuk

XnðuÞ ¼
Xk¼1

k¼�1
ZkðnÞuk

ð5Þ

Actually these functions are Laurent series with quanti-
ties Fk(n), F ��kðnÞ, Zk(n) as their coefficients. Setting u = eih

one obtains the magnetization components defined by Eq.
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(1). Let us now find relation between these functions for
index n and n + 1. One has to consider evolution of this
quantity during half of an inter-echo period, then action
of a angle pulse and again evolution during next half of
the inter-echo period. Quantities Fk(n), F ��kðnÞ, Zk(n) trans-
form themselves during half inter-echo period in the fol-
lowing way:
F kðnÞ ! F kþ1ðnÞ
F ��kðnÞ ! F ��ðk�1ÞðnÞ
ZkðnÞ ! ZkðnÞ

ð6Þ
It is easy then to derive that functions Sn(u), ~SnðuÞ, Xn(u)
are changed after half of inter-echo period by the simple
law:
SnðuÞ ! uSnðuÞ

~SnðuÞ !
1

u
~SnðuÞ

XnðuÞ ! XnðuÞ

ð7Þ
Taking into account the effect of a pulse given by Eq. (2)
and evolution during the second half of inter-echo period
we arrive at the following relations between these functions
on n and n + 1 step:
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or explicitly
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Let us now introduce complex functions of two vari-
ables u and z:
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Taking into account Eq. (9) one can easily obtain the
following system of linear equations with respect to func-
tions S(u,z), ~Sðu; zÞ and X(u,z):
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where S0 ¼ ~S0 ¼ M0, X0 = 0. This system can be rewritten
as
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Resolving this system one obtains the following expres-
sion for S(u,z):

Sðu; zÞ

¼� z� z2� u2 2þ zþ z2ð Þþ z 1� zþ u2ð3þ zÞð Þcosa

ð�1þ zÞ½zþ u4z� 2u2 1þ zþ z2ð Þþ 1þ u2ð Þ2zcosa�
M0

ð13Þ

It depends only on z and q = u2 and can be recast as

Sðq; zÞ

¼ � z� z2 � q 2þ zþ z2ð Þ þ z 1� zþ qð3þ zÞð Þ cos a
½ð�1þ zÞzþ ð�1þ zÞz cos a�ðq� q1Þðq� q2Þ

M0

ð14Þ
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where

q1 ¼
2þ 2zþ 2z2 � 2z cos a� 2ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 � 2z cos a
p

2 zþ z cos að Þ

q2 ¼
2þ 2zþ 2z2 � 2z cos aþ 2ð1þ zÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 � 2z cos a
p

2ðzþ z cos aÞ
ð15Þ

Now let us find the amplitude of nth echo that is quan-
tity F0(n). As the first step we obtain the value of coefficient
preceding u0 in function S(u,z) Laurent expansion or, what
is the same, coefficient preceding q0. This coefficient is actu-
ally a function of variable z. Let us denote it as FðzÞ. It is
obvious from Eq. (10) that

FðzÞ ¼
X1
n¼0

F 0ðnÞzn ð16Þ

That is nth coefficient of Taylor expansion of FðzÞ with
respect to z gives amplitude F0(n) of nth echo signal. One
can say that F ðzÞ is a generating function for echo ampli-
tudes. It is known from the theory of functions of complex
variables [13] that ‘‘coefficient’’ F ðzÞ at zero degree of u or
that is the same at zero degree of q = u2 in Laurent expan-
sion of function S(u,z) can be found as integral along the
unity circle contour in the complex plane, i.e.

FðzÞ ¼ 1

2pi

I
jqj¼1

Sðq; zÞ
q

dq ð17Þ

We can represent the function S(u,z) as

Sðq; zÞ ¼ uðq; zÞ
ðq� q1Þðq� q2Þ

ð18Þ

where

uðq; zÞ

¼ � z� z2 � qð2þ zþ z2Þ þ z 1� zþ qð3þ zÞð Þ cos a
ð�1þ zÞzþ ð�1þ zÞz cos a

M0

ð19Þ

For roots q1,q2 occurs q1q2 = 1. This means that one
root lies inside the unity circle, whereas the another one
outside it. Namely q1 lies inside the unity circle and q2 out-
side it for |z| < 1. Then for evaluating of the integral (17)
one needs to calculate residues of the function S(q,z) with
respect to variable q inside the unity circle. There are two
poles inside the circle: q = q1 and q = 0. Thus, the integral
(17) is equal to

FðzÞ ¼ resq¼0Sðq; zÞ þ resq¼q1
Sðq; zÞ

¼ uð0; zÞ þ uðq1; zÞ
q1ðq1 � q2Þ

ð20Þ

For calculation of the residue at q = 0 we took into
account that q1q2 = 1. Performing calculation of F ðzÞ
according to Eq. (20) we arrive at the following result:
FðzÞ ¼ M0

1

2
þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 � 2z cos a
p

1� z

� �
ð21Þ

The coefficient at zn degree in Taylor expansion of the
function F ðzÞ gives quantity F0(n)—magnitude of nth echo.
Using the well-known expansion

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 � 2z cos a
p ¼

X1
n¼0

znP nðcos aÞ ð22Þ

where Pn(cosa) are Legendre polynomials and representing
FðzÞ in equivalent form

FðzÞ ¼ M0

2
1þ 1þ z2 � 2z cos a

ð1� zÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ z2 � 2z cos a
p

 !
ð23Þ

one obtains for the amplitude of nth echo F0(n)

F 0ðnÞ ¼
M0

2

Xn

k¼0

P kðcos aÞ � 2 cos a
Xn�1

k¼0

P kðcos aÞ
 

þ
Xn�2

k¼0

P kðcos aÞ
!

ð24Þ

It is interesting to note that there is an efficient way to
compute the sums of Legendre polynomials using Clen-
shaw method [14]. The algorithm may be summarized as

Xn

k¼0

P kðxÞ ¼ b0ðxÞ

bjðxÞ ¼ x
2jþ 1

jþ 1
bjþ1ðxÞ �

jþ 1

jþ 2
bjþ2ðxÞ þ 1

bnþ1 ¼ bnþ2 ¼ 0

ð25Þ

One can find asymptotic of the expression when n fi1
employing an integral representation of Legendre polyno-
mial Pn(cosa)

P nðcos aÞ ¼ 1

p
ffiffiffi
2
p

Z a

�a

eiðnþ1
2Þ# d#ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cos#� cos a
p ð26Þ

Asymptotic of F0(n) is then

F 0ðn!1Þ

¼ M0 sin
a
2
� 1

2
ffiffiffiffiffiffi
2p
p

ffiffiffiffiffiffiffiffiffi
sin a
p

sin a
2

cosðna� p=4Þ
n3=2

 !
ð27Þ

Notice that to exploit this asymptotic for an arbitrary
value of angle a one has to substitute a with angle a0,
0 6 a0 6 p i.e. lies in range (0,p) and so that cosa0 = cosa.

Expression (27) confirms the long known fact [2] that
spin echo amplitudes converge to M0 sin(a/2) oscillating
with the period 2p/a.
4. Echo trains in presence of spin relaxation

Hitherto we neglected spin relaxation effects. Carrying
out similar treatment as on derivation of Eq. (9) and taking
into account effects of relaxation between RF pulses only
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(neglecting relaxation during RF pulse) one easily arrives
at the following equations

Snþ1ðuÞ
~Snþ1ðuÞ
Xnþ1ðuÞ

0
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CA
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2 ð1þ cos aÞj2
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1� cos a
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j2

ð1þ cos aÞ
2u2

j2

i sin a
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ffiffiffiffiffiffiffiffiffi
j1j2

p

�iu sin a
2

ffiffiffiffiffiffiffiffiffi
j1j2

p i sin a
2u

ffiffiffiffiffiffiffiffiffi
j1j2

p
j2

1 cos a
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1
CCCCCCA
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~SnðuÞ
XnðuÞ

0
B@

1
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where j1 ¼ e�s=T 1 and j2 ¼ e�s=T 2 . Proceeding further in a
similar way as on derivation of Eq. (21) one obtains

FðzÞ

¼M0

2
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ zj2ð Þ 1� z cosa j1þ j2ð Þþ z2j1j2½ �
�1þ zj2ð Þ �1þ z cosa j1� j2ð Þþ z2j1j2½ �

s !

ð29Þ

It is easy to see that in absence of relaxation i.e. for
j1 = j2 = 1 this expression reduces to Eq. (21). For partic-
ular angle a = p one has for any j1

FðzÞ ¼ M0

1� j2z

¼ M0ð1þ j2zþ j2
2z2 þ � � � þ jn

2zn þ � � �Þ ð30Þ

Thus, the coefficient at nth degree of z that gives the
amplitude of nth echo is equal to M0jn

2 ¼ M0e�ns=T 2 , which
is the well-known result for CPMG sequence. In practically
important ‘‘extreme narrowing’’ conditions, when j1 = j2

we observe the signal according to Eq. (24) damped by
monoexponential relaxation decay for any flip angle a
because the spin-lattice interaction equally effective
destroys S, ~S and X components of the magnetization.

The coefficients in Taylor expansion of Eq. (29) can be
easily found by numerical calculations. It is obvious that
for j1,2 < 1, i.e. in presence of spin relaxation the series
converges for z = eih, |z| = 1. Then one has

Fðz ¼ eihÞ
¼ F 0ð0Þ þ F 0ð1Þeih þ F 0ð2Þe2ih þ � � � þ F 0ðnÞeinh þ � � �

ð31Þ

which clearly indicates that all F0 values may be instantly
calculated by discrete Fourier transform of a sampled var-
iant of FðzÞ

F 0ð0 � � � nÞ ¼ FT FðeihÞ
Xm

j¼1

d h� 2pj
m

� � !
ð32Þ
The number of samples m should be selected large
enough to ensure F0(n)� F0(n + m).

In case of reverse task when it is necessary to find relax-
ation times and angle a from experimentally measured echo
amplitudes one can calculate ‘‘experimental’’ generating
function according to (16) and then find T1,T2,a from
best fit of it by analytical expression (29) for set of param-
eters |z| 6 1, for instance taken on the unity circle |z| = 1.
In the case when amplitude of experimental highest echo
is not vanishingly small one should use an apodization
procedure to make amplitude of highest echo negligible.
This apodization provides accurate comparison of experi-
mental and analytical generating function since allows one
to cut off infinite series (16) while calculating ‘‘experimen-
tal’’ function FðzÞ. This apodization procedure can be
done by entering of an exponential decay for echoes that
is equivalent to redefinition of relaxation times in a fol-
lowing way: 1=~T i ¼ 1=T i þ 1=sa. Here, ~T i is redefined
relaxation time (i = 1,2) and sa is the apodization decay
time.
5. Conclusions

Closed analytical expressions for echo amplitudes in
multiple spin echo sequences have been obtained for arbi-
trary refocusing pulse angle. In neglection of spin relaxa-
tion these amplitudes were represented in terms of sums
of Legendre polynomials. Analytical expression for so-
called generating function whose Taylor series coefficients
are equal to the echo amplitudes was derived for a general
case including relaxation. The latter allows efficient numer-
ical calculation of the amplitudes using fast Fourier trans-
form algorithm.

Asymptotic behavior of the spin echo amplitudes has been
shown to confirm with earlier numerical evaluations.
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